The Discovery Accelerator

Fifteen European cases at the frontier of Al-powered scientific discovery

An Implement Consulting Group study commissioned by Google November 2025

The Discovery Accelerator

Fifteen European cases at the frontier of Al-powered scientific discovery

Technological breakthroughs have long driven scientific progress - the foundation of prosperity, health, and human advancement. Yet over the past 75 years, the pace of discovery has slowed. Research has become more complex and costly, and new ideas increasingly harder to find.

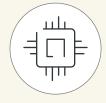
In recent years, advances in artificial intelligence (AI), building on decades of research and global collaboration, have opened new possibilities for accelerating discovery across scientific domains. Europe's research institutions and innovators are already applying AI to tackle major challenges in health, climate, and the natural sciences. This report showcases how AI is already delivering tangible impact across a multitude of fields of science today.

The 15 cases in this report demonstrate how AI is accelerating scientific discovery and innovation across Europe - offering tangible evidence of progress and early lessons for policymakers seeking to harness the full potential. They highlight how AI-enabled breakthroughs can help realise Europe's scientific ambitions - from faster drug discovery and more carbon-free energy systems, to improved environmental monitoring and a deeper understanding of our universe.

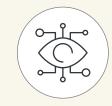
Across the 15 cases, five success factors emerge:

- **Collaboration**: Cross-sector and cross-border partnerships between public institutions, private firms, and researchers
- Long-term commitment: Sustained investment in both workforce upskilling and AI development over years, not quarters
- Compute capacity: Access to powerful, state-of-the-art infrastructure for AI development and scientific simulation
- Advanced models: Leveraging the latest AI research and tools to solve complex scientific problems
- **Data foundations:** Availability of high-quality, structured data from diverse and interoperable sources

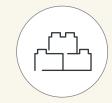
Together, these cases show how AI can invigorate Europe's scientific productivity - turning today's technological advances into tomorrow's discoveries


Collaboration & partnerships

Collaboration spanning across both private and public sectors as well as continents


Long-term commitment

Long-term investments and perseverance in AI projects and workforce upskilling

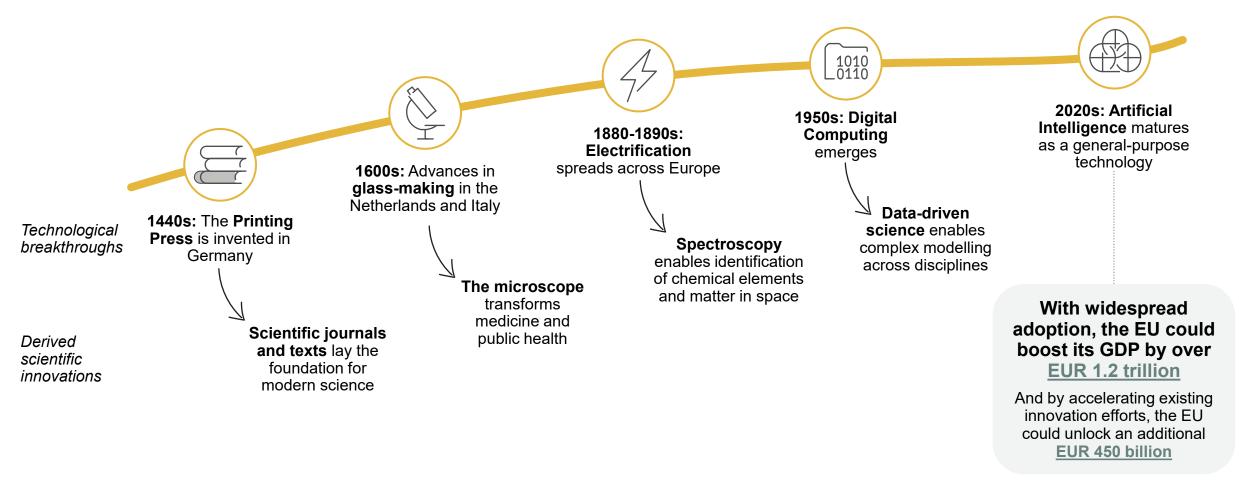

Compute capacity

Access to powerful, state-ofthe-art infrastructure

Advanced models

Leveraging the latest global Al research and tools

Data foundations

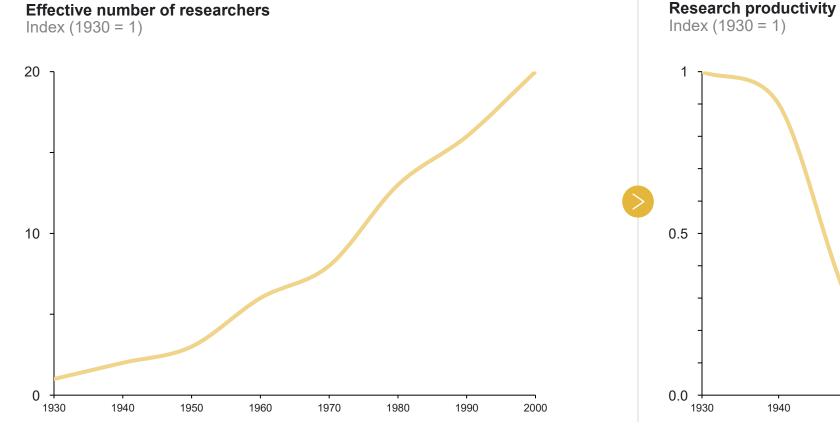

High-quality and consistently structured datasets across many sources

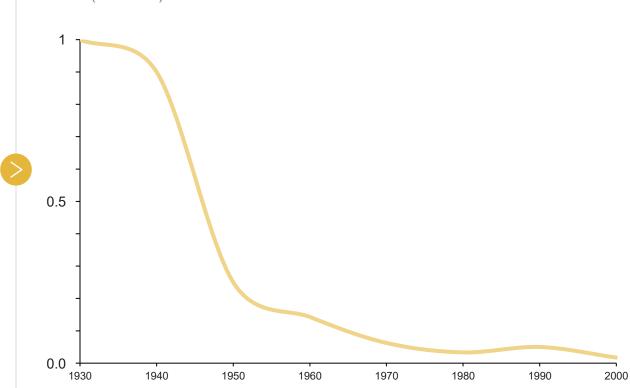
Contents

1	The role of Al in Science Discover how Al can play a vital role in accelerating scientific discovery. Learn about 15 cases of European scientists using Al today, their common success factors, and how they are aiding Europe realise its scientific goals.	4
2	Al x Health Six cases showing how Al is being used in healthcare: () Gleamer: Improves diagnostic speed and accuracy in radiology () Klineo: Improves patient access to clinical trials and cancer care () IEO-Monzino: Uses clinical data for better patient outcomes — BIOCAM: Improves gut diagnosis speed and accessibility — University Medical Center Freiburg: Drives medical innovation whilst protecting patient data — Infermedica: Improves accessibility of health diagnostics	11
3	Al x Climate Three cases showing how Al is being used to help climate goals: Eurocontrol: Reduces aviation emissions by 20% OroraTech: Protects the environment from wildfires Global Omnium: Protects the Mediterranean environment	19
4	Al x Natural Sciences Three cases showing how Al is being used in natural sciences: University of Barcelona, ICCUB: Processes vast data flows to map the billions of stars in our galaxy Google DeepMind: Accelerates breakthroughs in biology by predicting 200 million protein structures Google Research: Accelerates scientific breakthroughs with an Al co-scientist	24
5	Al x New Frontier Three cases showing how Al can unlock future breakthroughs: • Swiss Plasma Center: Accelerates fusion science with Al Google Quantum Al: Building a computer capable of supercharging Al innovation Google DeepMind: Achieving gold-medal at the International Mathematical Olympiad using Al	29
6	Policy's Role Unlocking AI for Scientific Advancement	34

Technological breakthroughs have accelerated scientific discovery throughout history — a cornerstone of prosperity and human progress

General-purpose technological breakthroughs and their impact on scientific discoveries

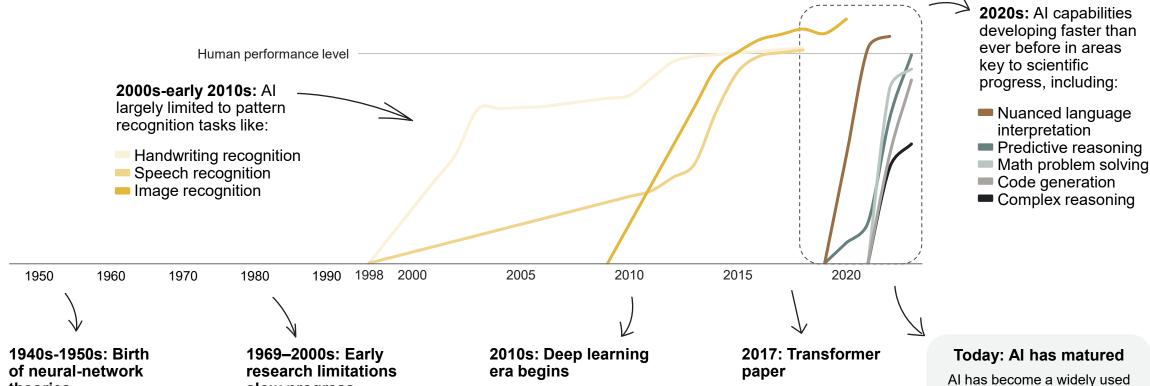



Ξ

Scientific progress has slowed over the past 75 years, with ideas getting increasingly harder to find

More and more researchers...

... are producing less and less innovation per dollar spent



Recent AI breakthroughs are a major turning point, with the potential to reverse the long-term decline in the pace of scientific discovery

Performance of AI systems relative to human capabilities¹

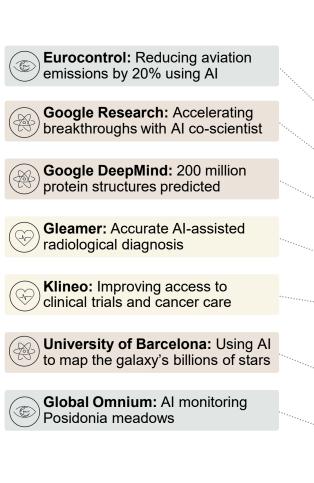
theories

First theories developed in the US and UK

slow progress

Industry use continues in Europe, Japan and the US

Breakthroughs from Canadian and French researchers unlock complex pattern recognition


International Google Research team introduces the architecture behind today's Al models

general-purpose technology, and is already accelerating progress on some of the hardest problems in science

Across Europe, scientists are already using AI to advance science

This report presents 15 European cases, within health, climate and natural sciences, showcasing how AI is accelerating science and offering early lessons

Google DeepMind: Achieving gold at the International Mathematical Olympiad

University Medical Center Freiburg: Driving medical innovation & protecting patient data

Infermedica: 23+ million Alpowered health checks

BioCam: Al-powered capsule accelerates gut diagnosis

OroraTech: Using AI to detect and monitor wildfires

Swiss Plasma Center:
Accelerating fusion science via Al for plasma control

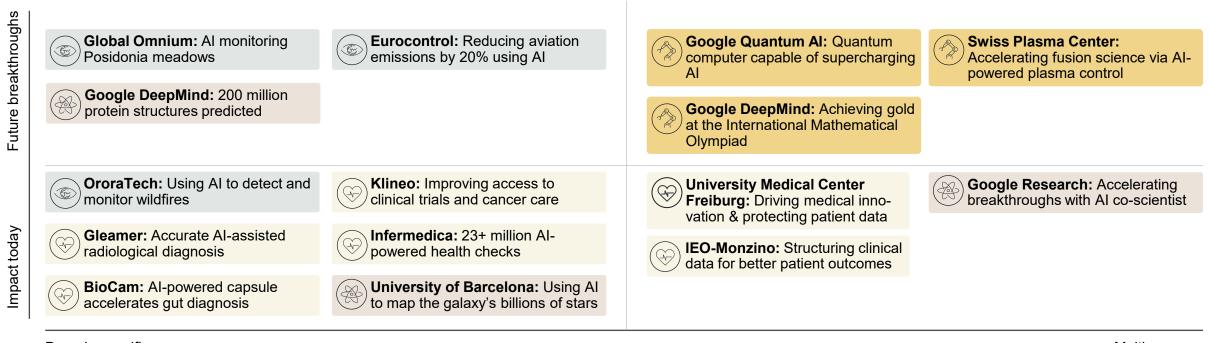
IEO-Monzino: Structuring clinical data for better patient outcomes

Google Quantum Al: Quantum computer capable of supercharging Al

Al x Health

Al x Natural Sciences

Al x Climate


Al x New Frontier

The 15 cases illustrate the breadth of AI – from showcasing the domain-specific impact from AI today, to the multi-purpose scientific discoveries of tomorrow

As a general-purpose technology, AI is advancing science across a spectrum of impact. On one end, domain-specific applications are delivering results in fields like health and climate today. On the other, multi-purpose AI breakthroughs are unlocking new frontiers in physics, computing, and fundamental research — paving the way for discoveries and applications (e.g. quantum computing) that could transform society in the decades ahead.

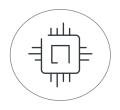
The report's 15 cases range from innovations delivering domain-specific impact today to multi-purpose breakthroughs of the future

Domain specific Multi-purpose

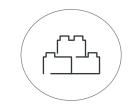
Al x Health

Al x Natural Sciences

Al x Climate


Al x New Frontier

8


Across the 15 cases in this report, we've found five common success factors

Common success factors

Collaboration & partnerships

Spanning across both the public and private sector, as well as continents

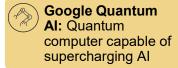
Long-term commitment

Long-term investments and perseverance in Al projects and workforce upskilling

Compute capacity

Access to powerful, state-of-the-art infrastructure

Advanced models

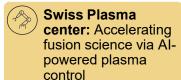

Leveraging the latest global Al research and tools

Data foundations

High-quality and consistently structured datasets across sources

Case examples

Google DeepMind: 200 million protein structures predicted



University Medical Center Freiburg: Driving medical innovation

Eurocontrol:

Reducing aviation emissions by 20% using Al

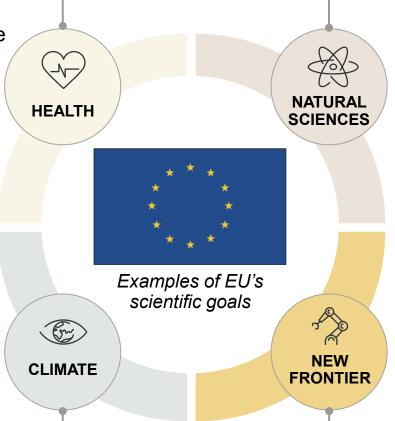
Barcelona
University: Using
Al to map billions of
stars in our galaxy

Structuring clinical data for better patient outcomes

Al-driven breakthroughs like the 15 cases in this report will further help realise Europe's scientific goals

EU goal: Improve the lives of over 3 million people by 2030 through prevention and cure

Gleamer - Al improves cancer detection in radiology, helping doctors diagnose earlier and more accurately


BioCam - Capsule endoscopy speeds up gastrointestinal screenings, making diagnosis less invasive and more accessible

Klineo – Al models match cancer patients with relevant clinical trials, improving access to cancer care

EU goal: Become the world's first climateneutral continent by 2050

Eurocontrol - Collaborates with **Google** on using Al to predict and reroute flights, cutting aviation emissions by 20%

EU goal: Strengthen Europe's space science and Earth observation capabilities

University of Barcelona – Institute of Cosmos Sciences – Uses AI to scale and enable space mapping mission

OroraTech - Satellites detect wildfires and feed data into EU's Copernicus Earth observation programme

EU goal: First demonstration of net fusion electricity to the grid by 2050

Swiss Plasma Center – EPFL collaborates with Google DeepMind to develop AI systems that can stabilise fusion plasma, a critical step on the path toward stable fusion

02

AI x Health

Al applications already create realworld results in Europe within health

The six cases of AI in health shows how AI is already contributing to EU realising its health goals

The promise of Al in health		is already materialising todaycontributing to Europe's		contributing to Europe's health goals
Faster, more accurate diagnosis across imaging and other specialties	> 0	Gleamer: Improves diagnostic speed and accuracy in radiology while reduces patient waiting times		EU Mission on Cancer: Improve the lives of >3
Personalised treatment and monitoring (precision medicine)	> Kline	Klineo: Improves access to clinical trials and improves patient cancer care with the power of Al		million people by 2030
Acceleration of drug design and		IEO-Monzino: Digitises clinical data to advance scientific research		Digital Decade target: Online access to electronic
biomedical research	UKF	University Medical Center Freiburg: Driving medical innovation whilst protecting patient data	/	health records (EHRs) for 100% of EU citizens by 2030
Novel and patient-friendly diagnostic methods	> 🗞	BIOCAM: Improves access to gastrointestinal screenings	\rangle	Europe's Beating Cancer Plan: 90% of eligible citizens offered breast, cervical, colorectal screening by 2025
A more efficient healthcare system that help doctors focus on patients)	Infermedica: Improves accessibility of diagnostics – reduces load on staff by helping with first-line symptom assessments and directing patient to appropriate care	>	European Health Union: Address health-workforce challenges through digital tools

Source: Implement Economics based on the European Commission

Radiologists achieve 30% more accurate diagnoses with Al assistance

>65%

of French university hospitals using Gleamer

27%

Patient time saved at hospital emergency department

Overview of collaborators Gleamer Rennes University Hospital Google Cloud + used by over 2,500 institutions worldwide

French company Gleamer has used AI to transform radiology - providing faster diagnostics and better patient care


The challenge

- In emergency hospital departments around the world, many trauma cases need rapid and accurate analysis to treat patients as soon as possible
- · Radiologists need tools that provide fast, precise and consistent diagnostics

The solution

- Gleamer has developed AI-powered tools that automatically detect trauma and other findings in radiology scans, helping radiologists provide faster, more consistent diagnoses
- The system integrates into clinical workflows, offering immediate AI-assisted reports. Partnering with Google Cloud further ensures the solution can scale to hospitals worldwide

- Across France, 65% of university hospitals now use Gleamer's AI tools
- At Rennes University Hospital, Gleamer's trauma detection tool BoneView has cut emergency department waiting times by 70 minutes (from 4h45) — improving patient experience and easing staff workload
- Validated by over 30 scientific publications, Gleamer's AI shows an average 30% improvement in lesion detection accuracy, allowing general radiologists to reach the level of specialists and ensuring consistent diagnostic quality 24/7
- Globally, Gleamer's AI is now deployed in more than 2,500 institutions across 45 countries, processing over 35 million scans each year

Improving access to clinical trials and cancer care with the power of Al

+70%

Patients that are ready to participate in clinical trials

20%

Trials that fail due to insufficient recruitment

Overview of collaborators Klines Gustave Roussy Institute Collectif Triplettes Roses Cerhom association NEURO VIE Google for Startups, Paris

French startup Klineo uses AI to match cancer patients with relevant clinical trials, improving access to cancer care

The challenge

- Clinical trials for cancer patients are critical to develop scientific studies and test new treatments, while also offering a chance for advanced-stage cancer patients to benefit from new therapeutic innovations
- Despite +70% of patients being ready to participate in a clinical trial, only <5% of cancer patients do so, and 20% of trials fail due to insufficient recruitment

The solution

- Klineo, a startup originating from Institut Gustave Roussy (a French cancer research hospital), are transforming access to cancer care through the power of Al
- Their free, fast and intuitive digital platform uses AI to help patients find the most relevant clinical trials, and then directly contact the doctors in charge of the trial
- The solution is developed in collaboration with a range of cancer patient
 associations, such as the Collectif Triplettes Roses, an association for women with
 breast cancer, and Neuro Vie, an association for patients with brain cancers

- Klineo's Al-based platform connects doctors and patients directly with relevant trials in less than a minute, democratizing access to new treatments for patients
- The platform lists all clinical trials open in France, and is working on expanding the platform across Europe, having recently joined the Google for Startups Academy's Al for Health programme to help scale their impact

Al digitises medical records to improve care for 1.7 million patients in Italy

76,000

Medical reports standardised using Al

2 months

Time spent to process reports (vs >50 years)

Overview of collaborators The European Oncological Institute (IEO); Monzino Cardiology Center Google Cloud

Milan's IEO-Monzino uses AI to get better research and patient insights from their clinical data

The challenge

- IEO and Monzino in Italy treat 1.7 million cancer and heart patients every year
- Their work generates vast unstructured data that is hard to use in applications ranging from day-to-day care to clinical research
- Selecting suitable patients for clinical trials is one example of a complex task without structured data, as it depends on matching detailed clinical inclusion criteria with each patient's profile

The solution

- IEO-Monzino built a secure data platform with Google Cloud's Al solution to collect and structure their data
- Staff can now apply this data for many purposes from monitoring care to identifying the most suitable patients for clinical trials

- Using AI, the team structured data from 76,000 medical reports in just two months

 whereas a similar project without AI spent 6 months processing 500 reports
- Staff can now identify suitable candidates for clinical trials faster and more effectively, giving eligible patients quicker access to innovative treatments
- Other solutions include dashboards to monitor patient outcomes and analysing medical records and reports — giving staff and researchers easier access to information and freeing more time for care

A swallowable, Alpowered capsule accelerates gut diagnosis for patients

44,400

Annual gastrointestinal (GI) cancers in Poland¹

30 minutes

Analysis turnaround time (vs 6-12 hours)²

Overview of collaborators BioCam Google for Startups, Warsaw campus Google Cloud

Polish start-up BioCam uses Al-powered capsules for endoscopic examinations – improving diagnosis time and patient experience

The challenge

- Digestive diseases, including cancer, are often detected too late; many people avoid endoscopy due to discomfort, cost and hospitalisation needs
- Across Europe, countries like Poland face a high gastrointestinal (GI) cancer burden, making prevention and earlier detection important for public-health

The solution

- BioCam has developed a small capsule that images the whole GI tract, which
 patients can use at home without anaesthesia or a hospital stay
- Collaborating with Google's Growth Academy, the company's solution uses AI to detect and flag potential lesions, allowing clinicians to quickly review results via BioCam's platform

- BioCam's at-home capsule reduces barriers to screening and enables earlier and more accessible detection and treatment
- The solution reduces analysis time to ~30 minutes (from 6–12 hours) and the capsule is ~2–3x cheaper than alternatives, improving clinician throughput, treatment quality and system efficiency
- The impact is not limited to helping human patients, with BioCam's solution also being used to support veterinary efforts

23+ million successful health checks conducted using Infermedica's AI tool

95%

Accuracy rate in prediagnosis and triage

30+ countries

Using Infermedica's Alpowered platform

Overview of collaborators Infermedica Google for Startups, Warsaw campus Google Cloud

Polish start-up Infermedica uses AI to pre-diagnose and triage patients, ensuring timely access to the right care

The challenge

- >50% of the global population lack access to basic healthcare, leaving millions without timely or accurate medical support
- Even where services exist, many patients do not receive the right care at the right time, straining patient well-being and the workload on healthcare systems

The solution

- Google for Startups graduate Infermedica has created an AI-powered healthcare platform built on ~97,000 hours of work from doctors and medical specialists
- The system combines symptom checking, medical history and AI reasoning to pre-diagnose, triage, and guide patients to the support they need

- The AI solution achieves a 95% accuracy rate in pre-diagnosis and triage
- It has performed over 23 successful million health checks, and is used by 100+ healthcare providers and insurers across 35 countries and 24 languages
- Originating from Warsaw's Google for Startups Accelerator, Infermedica demonstrates how European innovation can create impact and scale globally through secure and responsible Al

German data digitised to enable better healthcare whilst retaining full sovereignty of their data


Assisting surgeons with digital tools

Enhancing genomic use-case evaluations

[&]quot;The high security and performance of the cloud solution enables us to drive patient-oriented innovations faster and thus increase the quality of care."

Prof. Dr. Frederik Wenz, Chief Medical Director

Medical Center – University of Freiburg is driving medical innovation whilst protecting patient data with Google Cloud

The challenge

- The digitisation of university hospitals has the potential to both elevate patient care and reduce the strain on staff
- At the same time, it must be implemented with the utmost care to prevent security breaches and protect sensitive patient data

The solution

- The University Medical Center Freiburg partnered with Google Cloud and their sovereign cloud solution to power their digitisation journey with cloud
- This cloud-based solution will allow the medical center to drive innovation and progress in multiple areas while retaining full sovereignty of their data

The impact

- The impact areas range from enhancing the speed and scalability of genomic use case evaluations to leveraging AI to improve website accessibility and building digital surgical assistants
- This cutting-edge solution also has scope for groundbreaking future applications, such as eliminating training bottlenecks by substituting in-demand emergency and operating rooms for realistic virtual versions to seamlessly train the next generation of medical practitioners

Source: Implement Economics based on Google

03

AI x Climate

Al is already helping combat climate change and improve sustainability

The three cases of AI in climate show how AI helping EU reach its climate goals

The promise of AI in climate...

... is already materialising today...

...contributing to Europe's climate goals

Reducing emissions from transport

Eurocontrol: Using AI to reduce aviation related emissions by 20% at low cost

2050 long-term strategy: Become the world's first climate-neutral continent by 2050

Mitigate and adapt to extreme weather events

OroraTech: Uses AI to detect and monitor wildfires, helping protect the environment and society

Biodiversity strategy for 2030 & Climate Resilience and Risk Management Framework: Build EU's resilience to future threats such as climate change, forest fires, food insecurity, disease outbreaks (incl. wildlife protection);

Protect our environment and wildlife from climate change

Global Omnium: Uses AI to analyse underwater videos, protecting Posidonia meadows in the Mediterranean by tracking 450 thousand water meters

Establish a larger EU-wide network of protected areas on land and at sea

Source: Implement Economics based on the European Commission

Al can help reduce aviation emissions by 20% at low cost

35%

Share of aviation's global warming from contrails

54%

Reduction in contrails in live airline trial

Eurocontrol, the European Organisation for the Safety of Air Navigation, is partnering with Google to reduce contrails using Al

The challenge

- Aviation is a major contributor to global warming, and contrails formed by aircraft exhaust are responsible for around one-third of aviation's total warming effect
- · Reducing the effect of contrails has long been a priority for Europe
- Since 2020, Eurocontrol's work on contrail prevention has been supported by the German Aerospace Center (DLR) and the German parliament Group AKKL¹

The solution

- Google Research developed an AI solution that analyses satellite imagery to detect contrails and forecast where they are likely to form
- In 2021, Eurocontrol began collaborating with Google to incorporate this Al solution into its research and joint trials with European airlines
- These joint trials show how AI forecasting can help airlines avoid contrail-forming areas with minimal added fuel use

- Live trials with airlines showed a 54% reduction in contrails with only 2% additional fuel use – leading to a total reduction of aviation's warming impact by up to 20%
- This avoidance is estimated to cost around €5-20/ton CO2e a very cost-efficient ways of reducing carbon emissions, in other words
- This suggests that contrail avoidance seems to be a cost-effective, scalable warming reduction measure

Using AI to detect and monitor wildfires across Europe

5 million km²

Forests monitored worldwide

1.8 petabytes

Of wildfire data collected per year

Overview of collaborators OroraTech Technical University of Munich European Space Agency Google Cloud

German wildfire intelligence firm OroraTech partners with Google Cloud to detect fires in real time, covering 5 million km² of forests worldwide

The challenge

- Wildfires intensify with climate change, threatening lives, ecosystems, and infrastructure
- · Traditional detection is often too slow for response times to be sufficiently fast
- Europe can benefit significantly from satellite-based monitoring to strengthen its climate resilience

The solution

- German satellite company OroraTech has developed thermal infrared nanosatellites, sensitive enough to detect hotspots as small as a single tree
- By processing wildfire data directly in orbit and using direct downlink, the system delivers alerts within minutes instead of hours
- Their Wildfire Solution runs on Google Cloud with Vertex AI, and contributes data to the European Space Agency's Copernicus programme for EU-wide climate monitoring

- The solution enables governments, forestry services, and NGOs to respond to wildfires faster and more effectively
- They constantly monitors wildfires from orbit at scale for example, in Germany, OroraTech identified destructive wildfires in Brandenburg two hours before official alerts, leading to a faster response, protecting nearby communities and infrastructure
- Worldwide, OroraTech monitors and helps protect 5 million km² of forests, with just 30-minute intervals between satellite scans

Analysing underwater videos with AI to protect Posidonia meadows

450 thousand

Water meters tracked

Overview of collaborators Telefónica Tech Global Omnium Google Cloud

Spain's Global Omnium and Telefónica Tech team up with Google to protect Posidonia seagrass meadows in the Mediterranean

The challenge

- The Mediterranean hosts Posidonia seagrass meadows that both store carbon for millennia and enable biodiversity
- The meadows are sensitive to disturbance (climate change, pollution, anchoring), risking loss of stored "blue carbon" and general environmental damage
- Monitoring is fragmented, making it harder to act early and protect

The solution

- Global Omnium has partnered with Telefónica Tech and Google Cloud to use Al for automated and scalable surveillance
- A live AI system tracks underwater video to monitor the condition of Posidonia meadows and flag potential threats
- Cloud scalability enables future expansion (more sites, integration with waterquality and operations data) to make widespread use possible

- Monitoring deployed on Spain's Mediterranean coast will provide early warnings on environmental health and risks
- Live and decision-ready data will underpin conservation measures that safeguard long-lived carbon stores in Posidonia meadows

04

AI x Natural Sciences

Al is boosting Europe's strong natural and formal science tradition

The three cases of AI in natural sciences show how AI can boost Europe's strong natural and formal science tradition

The promise of Al in natural sciences...

... is already materialising today...

...contributing to Europe's scientific goals

Accelerate discovery across the research cycle

Google DeepMind: AlphaFold has been used to predict hundreds of millions of protein structures, which would have taken millions of researcher years at the current rate of experimental structural biology

Future European Strategy for Al in Science: Make science in the EU more impactful and

productive by fostering responsible adoption of Al²

Foster new, interdisciplinary, blue-sky thinking

Google Research: Enables scientific breakthroughs with an AI co-scientist that processes information across scientific fields and helps discover novel hypotheses

University of Barcelona, ICCUB: Processes vast science and Earth observation capabilities³ amount of data to map the billions of stars in our galaxy pattern detection and simulations

EU Space Programme: Strengthen Europe's space

Boost data-intensive science through

Using AI to map the billions of stars in our galaxy

2 billion

Stars analysed in ESA's Gaia catalogue

>95%

Computation reduced (Machine vs Cloud)

Overview of collaborators Institute of Cosmos Sciences – University of Barcelona European Space Agency Telefónica Tech Altostratus Google Cloud

University of Barcelona's Institute of Cosmos Sciences is using Al and Cloud to create an accurate and detailed map of our galaxy

The challenge

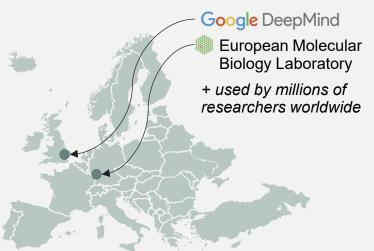
- The European Space Agency's (ESA) Gaia mission aims to create the most accurate and detailed map of the milky way yet
- The mission captures ~70 million images of the galaxy each day amounting to 45–100 GB of data
- Storage and analysis at this scale was beyond conventional computation capacity, with on-premise costs potentially running into tens of millions of euros

The solution

- The Institute of Cosmos Sciences at the University of Barcelona (ICCUB) used Google Cloud's infrastructure to process and store massive data streams from ESA's Gaia satellite
- Cloud tools such as Compute Engine and BigQuery allow researchers to run large-scale simulations, eliminating the need for expensive, on-premise servers

- ICCUB researchers now analyse data on two billion stars, enabling one of the most precise 3D maps of the Milky Way ever produced
- Google Cloud's infrastructure has cut processing time from over a year to three weeks, making large-scale space simulations feasible for the first time
- The project has strengthened Europe's role in global astrophysics and demonstrated how cloud computing can accelerate fundamental research while reducing infrastructure costs

200 million protein structures predicted, accelerating biology breakthroughs


>3 million

Users of AlphaFold worldwide

>190 countries

Researchers using AlphaFold database

Overview of collaborators

Nobel prize-winning AlphaFold enables scientists worldwide to predict protein structures with unprecedented accuracy and speed

The challenge

- Proteins are the building blocks of life they drive every biological process, from fighting infection to repairing cells
- Each protein's unique structure determines how it works, but uncovering these shapes can take years and cost hundreds of thousands of dollars per protein
- This made understanding disease mechanisms and developing new treatments slow, expensive, and often out of reach for researchers

The solution

- Google DeepMind developed AlphaFold, an AI system that can predict a protein's precise 3D structure in minutes, giving scientists immediate insight into how proteins function and interact
- The AlphaFold Database (AFDB) was made freely and openly available to the global research community in collaboration with the European Molecular Biology Laboratory (EMBL)

- AlphaFold has predicted over 200 million protein structures nearly all catalogued proteins known to science – and made them freely available through the AFDB
- So far, it has over three million users from over 190 countries, and has been used to predict hundreds of millions of structures, which would have taken hundreds of millions of researcher-years at the current rate of experimental structural biology
- The technology is already accelerating breakthroughs in drug discovery and disease research, supporting progress on malaria, cancer, antibiotic resistance and neurodegenerative conditions such as Parkinson's

Accelerating scientific breakthroughs with an Al co-scientist

2 days

Time spent recreating years worth of research

Overview of collaborators Google Research Google DeepMind Google Cloud Fleming Initiative – Imperial College London Houston Methodist Hospital Stanford University

Google has introduced an Al co-scientist to help accelerate scientists with novel hypotheses and research proposals

The challenge

- Modern science produces millions of new papers each year, making it difficult for researchers to keep up and find the most impactful ideas
- Scientific work across fields is also important for example, the Nobel Prizewinning discovery of CRISPR combined genetics, micro- and molecular biology
- This "breadth and depth" challenge means researchers spend an increasing amount of time navigating complexity, slowing down scientific discovery

The solution

- Google developed an AI co-scientist to support scientists with scientific discovery.
 The AI system mirrors the scientific method: it reviews literature, proposes novel hypotheses, and outlines experiments to test and expand knowledge
- Rather than just summarising information, it generates new scientific ideas giving researchers a starting point with greater speed, scope and focus
- We have worked together with researchers from institutes including Imperial College London, Stanford and others to test its capabilities.

The impact

- Al co-scientist has already helped researchers identify new uses for existing cancer drugs, potentially speeding up discovery of new treatments
- In one example, AI co-scientist replicated decades of research in just two days, helping scientists at Imperial College London validate a breakthrough on antibiotic research
- It has further pointed to promising new drug targets for liver disease, which could save years of trial-and-error in the lab

Source: Implement Economics based on Google

05

AI x New Frontier

Al has even more in store for Europe — if the right policies are in place to unlock its full potential

The three cases of AI at the new frontier of science show how AI is being used to unlock the scientific breakthroughs of the future

The promises of AI to unlock new frontiers...¹

... are already materialising today...

...contributing to Europe's future goals

Enable advanced experimental control of large-scale complex experiments

Swiss Plasma Center: Advancing nuclear fusion research by using AI to autonomously control plasma in collaboration with Google DeepMind

EU fusion pathway: Incorporate fusion electricity into the grid by 2050²

Better control and manipulate quantum systems; Calibrate scaled-up experiments in quantum computers

Google Quantum Al: Developing a quantum computer capable of super-charging Al innovation

Quantum Flagship Initiative: Consolidate and expand European scientific leadership and excellence in quantum research³

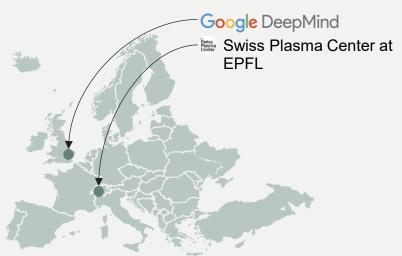
Enable scientific research particularly in the natural and mathematical sciences

Google DeepMind: Achieved gold-medal at the International Mathematical Olympiad with Al model

Future European Strategy for Al in Science:

Make science in the EU more impactful and productive by fostering responsible adoption of Al⁴

Accelerating fusion science through Alpowered plasma control


First ever

Magnetic confinement control with Al

Open access

Fusion plasma simulator made available for all scientists

Overview of collaborators

Google DeepMind and the Swiss Plasma Center demonstrate how Al can autonomously control plasma, advancing nuclear fusion research

The challenge

- To solve the global energy crisis, researchers have long sought fusion energy a
 potential source of limitless, and clean, energy
- Nuclear fusion, the reaction that powers the stars, is one contender by smashing and fusing hydrogen, huge amounts of energy are released
- Recreating these conditions on earth is difficult, and controlling them is a major challenge

The solution

- Google DeepMind and the Swiss Plasma Center at EPFL developed the first Al system able to learn how to magnetically stabilise superheated plasma inside a real fusion reactor
- Trained in simulation, the AI learned to adjust magnetic fields thousands of times per second to keep the plasma stable — even controlling new configurations that scientists had never tested before

- The AI solution was able to autonomously control plasma in a nuclear fusion reactor – a breakthrough published in Nature
- The Al allows scientists to test new plasma shapes quickly, accelerating progress toward making fusion a reliable, clean energy source
- This collaboration is one example of Google DeepMind's broader collaborative work on Fusion, further exemplified by the 2024 release of TORAX, a free plasma simulator to help fusion researchers worldwide design next-generation reactors

Building a future quantum computer to open new Al frontiers

< 5 minutes

Time to solve a task beyond reach of existing computers Physics World Breakthrough of the Year

Overview of collaborators

Willow, Google's new quantum chip, demonstrates performance far beyond classical supercomputers

The challenge

- Quantum computers use the physics of atoms to process information in entirely new ways, promising huge advances in medicine, clean energy, and materials science
- For decades, building these machines proved nearly impossible: as quantum systems scale and grow, they become unstable and prone to errors, limiting their usefulness for real-world science

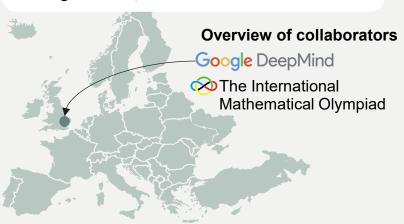
The solution

- Google launched Willow, a new quantum chip that, for the first time, became more stable as it scaled — a challenge that the field has pursued for almost 30 years
- This breakthrough shows that large, useful quantum computers are achievable sooner than expected — and when they arrive, we expect them to accelerate Al innovation

- In benchmarking, Willow solved a problem in under five minutes that would take today's fastest supercomputers 10²⁵ years, longer than the age of the universe
- Willow marks a step toward practical quantum applications, in AI and also in areas like drug discovery and clean energy, and was given the 2024 Physics Breakthrough of the Year award

Al achieves gold-medal at the International Mathematical Olympiad

Top 8%


Al performance relative to the global elite mathematicians¹

35 / 42 points

Gold-medal-level performance at IMO 2025

GG

"Their (Google DeepMind's) solutions were astonishing in many respects. IMO graders found them to be clear, precise and most of them easy to follow" Dr. Gregor Dolinar, IMO President Prof.

Al achieves gold-medal at the International Mathematical Olympiad (IMO), showing Al's growing ability to do complex reasoning

The challenge

- The International Mathematical Olympiad (IMO) is the world's most prestigious competition for mathematicians, designed to test creativity and deep reasoning
- Al systems have long struggled with such open-ended problems that require multi-step reasoning, abstract thinking, and precise proofs rather than pattern recognition

The solution

- Google DeepMind developed an advanced version of Google's AI model Gemini Deep Think, an enhanced reasoning AI for solving complex problems
- The system was trained with new reinforcement-learning and parallel-thinking techniques, allowing it to explore multiple solution paths simultaneously and produce rigorous proofs — all within the four-and-a-half-hour IMO limit

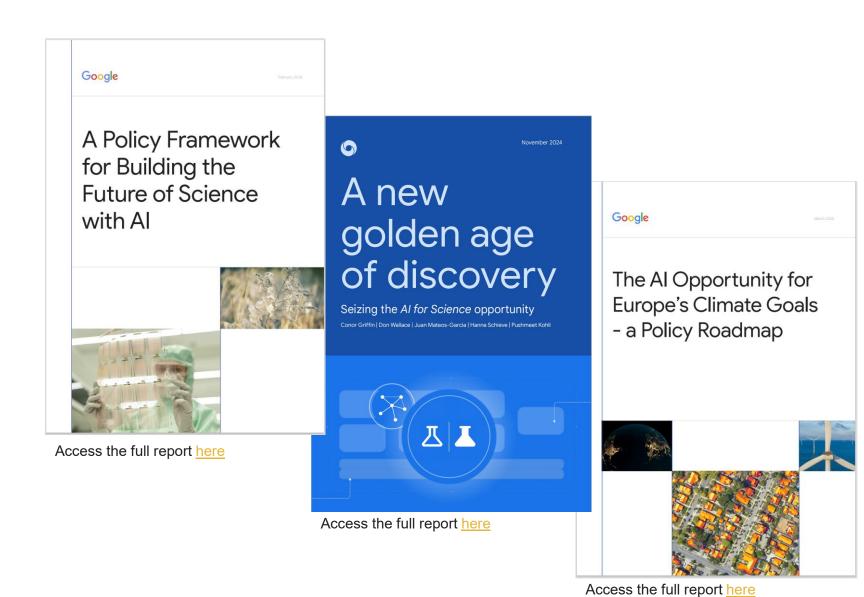
- Google's Al model Gemini Deep Think achieved a gold-medal score of 35 points, solving five of six IMO problems — the best Al performance ever officially certified by IMO graders
- This marks a major step forward in Al-assisted reasoning, showing how systems that combine natural-language fluency with complex reasoning skills can support scientists, engineers, and mathematicians across disciplines

^{1.} The International Mathematical Olympiad ("IMO") is the world's most prestigious competition for young mathematicians and has been held annually since 1959. Each country taking part is represented by six elite, pre-university mathematicians who compete to solve six exceptionally difficult problems in algebra, combinatorics, geometry, and number theory. Medals are awarded to the top half of contestants, with approximately 8% receiving a prestigious gold medal.
Source: Implement Economics based on Google

06

Policy's Role

Unlocking AI for Scientific Advancement


Accelerating scientific discovery through policy

Z

Artificial intelligence is already accelerating science across Europe. To secure our scientific future and fully realise this potential, policymakers must adopt a cohesive strategy.

The following section presents our recommendations on policy.

These recommendations draw from a range of Google and Google DeepMind policy papers, and they lay out a comprehensive agenda for empowering Europe's scientists and ensuring Al is deployed responsibly and impactfully.

Enabling the Al-Driven Ecosystem: Building the Foundations (1/2)

The foundation for Al-driven scientific discovery rests on three pillars: high-quality data and powerful computing infrastructure, a skilled workforce, and an enabling policy environment. Policymakers must focus on laying these essential groundwork elements.

The following policy recommendations are critical for equipping researchers across all scientific domains with the tools necessary for future breakthroughs.

Key policy pillars to enable the AI-Driven ecosystem

The power of AI in science hinges on access to large, high-quality scientific datasets. However, much valuable scientific data remains uncollected, uncurated, or inaccessible. A coordinated effort is needed to make the scientific world more "machine-readable" through digitisation, standardisation, and improved data sharing practices.

Data

Making the World Readable to Scientists

Policymakers should run AI for Science Data Stocktakes to identify opportunities to build new, AI-ready datasets and upgrade existing data assets for the AI era, co-funding the most ambitious initiatives with industry and philanthropy. High-quality, well-maintained data will enable AI to accelerate discovery across domains.

This effort should be coupled with open data policies, making publicly funded research data and government datasets available and accessible to researchers, and targeted investments to unlock untapped or underutilised scientific data sources. Further, national institutions, with their capacity for data stewardship, should create and disseminate anonymized, diverse datasets, particularly in sensitive areas like health and medicine, while upholding strict privacy standards.

Enabling the Al-Driven Ecosystem: Building the Foundations (2/2)

Key policy pillars to enable the AI-Driven ecosystem

Infrastructure

Increase Access to Al Infrastructure

Countries must build the infrastructure necessary to empower their scientists with the tools they need to be dramatically more effective in solving pressing challenges like disease eradication, sufficient supplies of energy, and food security. Accomplishing this will require making AI-enabled research tools and resources more accessible to more scientists in more places. Public-private partnerships to build infrastructure for science is an enabler for AI-powered scientific progress by reducing unnecessary obstacles to innovation and fostering broader collaborations.

Policymakers should create national AI for science resource centers to make data, AI models, compute capacity, software and tools accessible for scientific research. These national resource centers could also coordinate with an international center designed to facilitate the use of AI for global scientific collaboration and progress.

Talent

Teach AI as the next Scientific Instrument

Cutting edge data and models are not enough on their own to unlock the potential of Al. Scientists must learn how to use Al as a scientific instrument to make it part of their everyday toolkit.

Governments and universities can expand access to Al training—from short practical courses for existing researchers to new interdisciplinary degree programmes and fellowships. Postgraduate science students should have access to Al fundamentals, building capacity for Al-driven innovation in areas like medicine and biology.

This should be complemented by more advanced training opportunities for established researchers and efforts to integrate AI and data science skills more deeply into scientific education at all levels, and a commitment to training educators through updated professional development programmes.

Z

Directing Strategic Investment: Setting Goals & Experimenting

Strategic investment is crucial for ambitious, long-term research. By defining clear goals and embracing new organisational models, Europe can maximise the returns on its scientific commitment.

Two key pathways to directing strategic investments

Identify

Priority Areas for Leveraging AI in Science

Launch an EU effort to identify and prioritize the most important unsolved problems in science that are well-suited to AI approaches. This could take the form of a public call for submissions from the scientific community, followed by expert evaluation and selection of a set of "grand challenges" to focus EU efforts. These problems could then form the basis of new scientific competitions, supported by high-quality datasets, rigorous evaluation methods, and competitive benchmarks. It could also help direct greater public, private and philanthropic funding and attention to these priority areas.

Build Evidence

and Experiment with New Ways of Organising Science

As AI transforms research, policymakers need better evidence on what works. Governments can invest in metascience to study how AI is used across disciplines, and experiment with new ways of organising science—such as Focused Research Organisations or dedicated AI for Science institutes—to test faster, more collaborative approaches to discovery. In addition, regulatory sandboxes may encourage experimentation and innovation in AI technologies, allowing companies to test and refine solutions.

Z

Guiding Deployment and Collaboration: Realising Impact

To ensure that Al's foundational capabilities translate into measurable progress across Europe's scientific and societal priorities, policymakers should focus on deploying Al responsibly and effectively across scientific domains such as health, climate, and the natural sciences.

Three key routes to realising the impact

Enable

Global Legal and Institutional Collaboration

Science thrives on collaboration and the open exchange of information. Governments should work together to create harmonised, interoperable regulations to encourage continued scientific progress, especially in areas like copyright, privacy, and cross-border data flows. Global legal frameworks can protect the marketplace of scientific ideas and enable responsible AI progress.

Deploy

Scaling Al Solutions through Partnerships and Targeted Action Successful implementation of AI solutions relies on partnership. AI should be used for cross-sector collaborations to measure progress towards shared goals. Within the environmental domain, examples include managing natural disaster preparedness and response or creating roadmaps for countries across the EU to adopt AI solutions in energy, industry, transport, and agriculture.

Guide

Transparency and Responsible AI Progress

Policymakers can play a key role in guiding and enabling both AI and the infrastructure behind it to realise the technology's benefits while also mitigating potential risks. For example, leaders can set policies that help ensure AI transparency and governance mechanisms to strengthen public trust.