
– handling text as data

GETTING STARTED
WITH NATURAL
LANGUAGE
PROCESSING

Getting started with natural language
processing – handling text as data

2

Data from audio and text
contains a huge potential for
generating insights arising
through traditional channels.
Until recently, this potential
has been rather inaccessible,
but working with natural
language processing and
analysing text and speech
as data, we can now start
generating and acting on
these new insights.

Introduction

The big data revolution has been raging
for a few years. And at roughly the same
pace as organisations have begun
setting up structured data warehouses
for reporting purposes, new and
exciting data sources such as text
and audio are to a higher extent seen
as valuable sources of information.
These data sources hold a potential
for creating value in everything from
customer journeys to public services,
and they often contain value and
insights beyond what traditional
tabular formats do. In other words,
audio and text data contain a huge
potential for generating – and acting
on – insights arising through traditional
channels that have not traditionally
been as accessible as they are right
now.

Getting started with natural
language processing – handling text
as data

What is this guide, and who
is it for?
In its entity, this guide is for people who
can envision some of the potentials
that lie embedded in text or audio data
but who need more comprehensive
insights into potentials, requirements
and/or methods. Covering these topics,
we know that it is necessary to address
complex concepts and their impact,
and we acknowledge that certain topics
may be (too) difficult for the uninitiated.
Therefore, we have decided to split the
guide into two parts:

The first part is aimed at those
recognising natural language
processing (NLP) as a fast-emerging
field but who still wonder what sort of
text is relevant, which use cases are
possible, where they can find text data
and how the field has progressed – but
who at the same time do not need to
understand how or why computers
interpret text as they do.

The second part is aimed at the
technical side of NLP. It is for readers
who are curious about the technical
aspects such as how to move from
text to 0s and 1s that are readable
by a computer and how to approach
the complexity that inherently lies in
working with text and speech as data.

Why this guide?
At Implement, we are experiencing an
increased demand for data science
competencies in general, and the

3

analysis of text as data (often labelled
as natural language processing or NLP)
is a big driver of that.

Part one

What is NLP, and how can it be
approached?
In this first part of the guide, we will be
covering:

•	 What natural language processing is.

•	 How broad the field is, and how it has
changed over the past years.

•	 How NLP can be approached from a
data source perspective.

First, though, we should agree on
when to use NLP – and maybe most
importantly, when not to. As with so
many other things, we experience
a trade-off between approaching
a task manually versus deploying
advanced analytics. The true value
of text analytics lies in the analysis
of very large quantities of text, but
current NLP solutions cannot grasp the
complexities of language to the same
degree as a human reader would be
able to. Thus, with the use of NLP, we
must sacrifice some precision in the
analyses, but we are able to conduct
our analysis over thousands, or
perhaps even millions, of documents.
In addition, we see larger and better
language models being published at
a rapid pace, so perhaps the future of
NLP looks like what is depicted in the
figure below?

220329_Fig_Natural Language Processing_TOBS

Future
NLP?

Humans

NLP

Amount

Complexity

Despite previous warnings, the field
has come a long way in recent years.
Across our projects, we have already
seen natural language processing
being used to realise some of the
following potentials:

•	 Comparing very large quantities of
text to find similar documents.

•	 Identifying which products are being
negatively mentioned on critics’
websites.

•	 Transcribing and segmenting
customer contact based on what the
customers need, e.g. help with billing,
sales etc.

•	 Identifying whether a (collection of)
document(s) is compliant from a
regulatory standpoint, mentioning
the required entities.

•	 Creating a decision support tool that
is based on historical case facts,
yielding a consolidated overview to
increase the quality of future case
decisions and processes.

However, NLP is not only becoming
more valuable in organisations and
professional work. As a matter of fact,
you probably encounter NLP several
times a day:

•	 When contacting the website on
which you ordered a pair of shoes
where a chatbot can look up and
return your order status.

•	 When you search on Google,
advanced NLP models enabled by
semantic search ensure that the
responses you are looking for are
found and are at the top of the
search results.

•	 You probably receive less spam
in your email inbox because NLP
enables advanced spam filters.

Getting started with natural language
processing – handling text as data

4

•	 Your doctor’s office probably
transcribes the doctor’s notes and
maybe even generates precise
medical assessments based on a
description of symptoms.

Many organisations have large – and
steadily increasing – amounts of
natural language data that are
ready and waiting. Examples include
public sector requirements for
documentation, e.g. of meetings with
citizens, decisions regarding citizens’
rights, hospital logs and much more.
In the realm of private organisations,
customer contact often occurs via
chat(bots), phone calls and/or emails to
and from customers.

In a customer experience situation,
many organisations do not have a clear
idea of their customers’ pain points
until they ask for explicit feedback
from customers in the form of surveys
or similar. However, if they use NLP
instead, it becomes possible for the
organisations to collectively listen to
worries, experiences and/or praise,

making it possible to be even more
in touch with customers and citizens
by alleviating problems and, in turn,
prevent churn, dissatisfaction or
similar at a higher rate.

Perhaps the most obvious point
here is that these data sources
and applications serve the purpose
of automating tasks otherwise to
be handled by humans. Instead of
spending time and resources on
classifying or summarising insights,
employees can spend time on other
value-adding activities.

A rapidly developing field
sparking organisational change
The field of NLP is changing at an
extremely rapid pace, and researchers
are developing ever-improving and
impressive language models that can
solve an increasingly large number of
problems.

The timeline below highlights some of
the biggest advances made in the field
in the last couple of years:

220329_Fig_Natural Language Processing_TOBS

The Google BERT model is
released; and with 340 million

parameters, it quickly becomes
state of the art. The model is the
backbone of the Google search

engine up until late 2020

OpenAI launches their GPT-3
language model with 175 billion

parameters, surpassing the
previously largest language

model, NVIDIA’s Turing-NLG with
its 17.2 billion parameters

The Google Brain team creates
a transformer-based neural

network language model with
1.6 trillion parameters (9 times
larger than GPT-3) that is not

publicly available

NVIDIA releases their Megatron-
Turing NLG language model with

530 billion parameters

2018 May 2020 January 2021 November 2021

Based on this past development,
Geoffrey Hinton, the 2018 recipient
of the Turing Award and one of the
“godfathers of AI”, was prompted to
tweet that “given the performance of
the 175 billion parameters in GPT-3,
we’d need a model with ~4.4 trillion
parameters to know the answer to
life, the universe and everything.” To
this extent, the Google Brain model
from January comes 36% of the way.
The models and their underlying
architectures have improved over the
years; and with the massive increase
in the number of parameters, the
models become better and better
and can be fine-tuned to support a
multitude of tasks from answering
questions, rewriting text, translating
text etc. Any task involving text – and in
almost any language – can be solved,
as the increase in parameters and the
improved architecture help models
learn from the text they are trained on.

If we look at surveys such as the
Gradient Flow 2021 NLP Survey and the
IBM Data Science Community Survey
in addition to the works of Gartner

5

and Chatbots Journal, it is clear that
the NLP field is a catalyst for a lot of
organisational change, just given these
simple facts:

•	 NLP budgets grew by at least 30% for
one in three tech leaders in 2020.

•	 NLP is in the top 3 of applications
that data scientists prefer to work on.

•	 NLP is one of the most visible and
popular forms of applied artificial
intelligence. Since language is one
of the most fundamental forms
of intelligence, its benefits are
widespread, well recognised and
easy to understand.

•	 Gartner expects the chatbot market
to plateau within two years as
a testament to how far the field
has come but also as a means of
generating even more data – and
at that point, it is very likely that, in
the future, contact with your bank,
insurance company, healthcare
provider etc. will all be driven by
chatbots, as Gartner predicts
that 70% will be interacting with
conversational platforms every day.

•	 The size of the global conversational
AI market is expected to grow with a
30.2% CAGR from today until 2024,
mainly driven by virtual assistants
and chatbots.

Our introduction to this guide would
not be complete without our main
source of inspiration: NLP is easy,
and NLP is intuitive. Even if it does
exist at the intersection of computer
science and linguistics (“computational
linguistics”), text is easy for our brains
to comprehend; and thus, it becomes
easy to explain difficult NLP concepts
to peers and clients. As far as NLP goes,
a lot of the insights we present are, if
you think about it, commonsensical.
When an adjective is mentioned before

a noun, it is likely that the adjective
is describing the noun. So, we may
rightly ask (e.g. in the context of a
customer review analysis): “Which
nouns or entities are mentioned
using particularly positive or negative
adjectives?” We do not need much
else before we can start analysing;
and before long, we may be able to
give an initial answer to what works
and what does not work, e.g. across
sales processes or supply chains. We
hope that this and future guides will
enable your organisation to do exactly
this quick transition from curious
questioning to thorough analyses
supported by NLP.

Locating data
sources

What is text, and where do we
find it?
So far, we have established that the
amount of text available to companies
is exploding. But where is all this text
located?

Text exists in many places, but some
of the most common places are
illustrated in the figure below:

220329_Fig_Natural Language Processing_TOBS

FILES
File format:

DOCS or PDF

WEB
File format:

HTML

API
File format:

JSON

SYSTEM
File format:

XML

Often, text exists in a structured,
readable format such as large amounts
of PDFs or Word documents, but
sometimes the text is a bit more hidden
and only accessible through system
dumps.

It could also be the case that the
combination of data sources renders
the best result, and your analysis
might benefit from adding information
available through websites.

Getting started with natural language
processing – handling text as data

6

It varies whether websites have
displayed their content in a structured
format through API or if it is necessary
to scrape the website.

Scraping is the process of extracting
data, usually from websites, by writing
codes that can access the contents
of the site in the underlying HTML
structure. This way, the text available
online can be consolidated and parsed
into any given programming language
ready for further analysis.

No matter the origin, the first step
is to locate text and parse it into the
computer. Each data source requires an
individual parser to ensure proper load
of data, and a lot of the preparation
time for a text analysis lies in this initial
step.

Part two

Understanding the technical
background of NLP
In this second part of the guide, we will
dive into how NLP is to be performed,
and we will touch upon some of the
most relevant considerations. Thus, we
now head into the technical side of the
guide where we turn to the following
topics:

•	 Pre-processing: From verbal
and syntactic to aligned and
generalisable text.

•	 Mathematical representation of text:
How text is represented as 0s and 1s.

•	 Speech as data: How verbal and
written communication vary, and
what it means.

Establishing common
terminology
To begin the journey of working with
text as data, you need to establish a
common vocabulary of the data set.
So, here follows some common NLP
terminology that will be useful through
the rest of the guide. Our collective text
data set is called a corpus, which is
made up of a collection of documents.

A document in your corpus does not
need to be a document in the classical
sense. The granularity of your data set
depends on the analysis it will be used
for. If the analysis to be made provides
more value if applied to each section of
a given document or to each individual
sentence, then the documents in your
corpus will be a collection of those
sections or sentences.

Each document consists of a set of
tokens, which is just what we call
a word or a punctuation when it is
being represented as a single unit in
computational language. Gathering
all unique tokens thus gives us a
vocabulary of the data set.

Lastly, words are often referred to as
terms in NLP and, when parsed to a
machine-readable format, could be
thought of as features as we know
them from conventional machine
learning methods.

The, plane, is, not, an,
option, as, the, bus, is,
obviously, the, more,
environmental, choice, !

Documents

Corpus

TokenTerms

Pre-processing

Introduction
With the text now being parsed and
available, the next step is to clean
the data and do some basic pre-
processing – all done to streamline
the text as much as possible. The
following section will describe the
pre-processing of text for some of
the simpler analysis methods. The
approach when working with advanced
language models differs and is not in
scope for this article.

It is necessary to do pre-processing
to ease the task of understanding for
the computer. However, it comes with
a trade-off. The task of pre-processing
almost always removes some of the
semantic meaning of the text, as
this is an inevitable consequence
of preparing the text for computer
analysis. In other words, we need to
sacrifice some precision if we want to
do structured analysis of hundreds or
even thousands of documents.

Three basic steps in
pre-processing
Let us dive into the basic steps of pre-
processing with a working example.
Consider the sentence:

“�The plane is not an option, as the bus
is obviously the more environmental
choice!”

The first step would be to tokenise
the sentence, making every word or
punctuation a unique unit:

7

plane, option, bus,
environmental, choice

We recognise the semantic loss of
the sentence, but we also see that
the steps above helped us identify
the important aspects of the text. We
still have the essence showing us that
the text is about planes and buses,
something with an option and a choice
while considering the environment.

The above steps constitute the basic
hygiene for cleaning text, but you
should apply them intelligently. There
may be some types of analysis where
the information loss introduced by this
cleaning is significant to the accuracy
of the analysis. This could be sentiment
analysis, in which punctuation might be
a clue about an emphasised sentiment,
and hence a means of a more accurate
analysis. As punctuation may carry
valence, the phrases “I don’t like it”
and “I don’t like it!” should perhaps
get different sentiment scores, as
the latter carries a stronger negative
emotion.

Stemming vs lemmatisation
Apart from the three basic steps
described above, you can also apply
more intelligent pre-processing. Enter
stemming and lemmatisation.

As with the other methods, stemming
and lemmatisation also try to
standardise the text. Their main
purpose is to ensure that words like
“processing” and “processed” are
mapped as the same token in our
final vocabulary. Again, we see a loss
of semantic information as we, in this
case, no longer will be able to tell when
the given activity took place. However,
we are ensuring that “to process”
something is up-weighted in our
vocabulary.

How exactly the two tenses of “to
process” are standardised is the
differentiator between stemming and
lemmatisation.

Now we need some alterations to
standardise the text to the highest
degree. If we were to parse this to
the computer, it would assume that
“environmental” and “!” carry the same
amount of information, as they are
both represented as a token in the
text. We know that is not the case, and
the first step would therefore be to
remove punctuation. However, all great
rules are a product of their exceptions;
and thus, punctuation is not always
removed. More on that later.

Next, the computer would handle
“The” and “the” as two different tokens.
We know that there is no meaningful
difference between the two. One just
happens to be at the beginning of a
sentence; and hence, the second step
would involve making everything lower
case. By setting all our text to lower
case, we ensure that the significance
of a given word is representative of
the text and not skewed by sometimes
being placed at the beginning of a
sentence and, hence, written with an
initial capital.

Furthermore, we want to remove
stop words. The process of removing
stop words is an attempt to help the
computer focus on the parts of the text
that provide the most information. Stop
words include “and”, “the” and “it”, i.e.
words that tell us nothing of particular
interest to the content of the document
we are working on. Their main purpose
is to provide semantic meaning, which
we have already decided will be our
cost of cleaning.

Our sample sentence now looks like
this:

Stemming
Stemming is by far the simpler of the
two and is trying to reduce words to
the word stem. This is a rule-based
approach. We could have designed
specific mappings based on defined
prefixes or suffixes, and this could be
the verb tense suffixes such as “-ed” or
“-ing”. With this rule in stemming, the
words “processing” and “processed”
both become “process”.

However, in some cases, stemming
can return a stem that is not a word in
itself, e.g. when the word “trouble” is
stemmed to “troubl”. This is an example
of overstemming. When a word is
overstemmed, too much of the word
is cut off, resulting in a nonsensical
word, or different words with different
meanings are stemmed to the same
word. A classic example of this is
the words “universe”, “universal” and
“university” all being stemmed to
“univers”. However, the opposite can
also happen, in which case the word is
said to be understemmed. In this case,
similar words are stemmed to different
stems with another classic example
of “alumnus” → “almunu”, “alumni” →
“alumni” and “alumnae” → “alumna”, all
of which should return the same stem.

Lemmatisation
So, having established that stemming
can get us some of the way in our quest
for standardisation of our text, we
also recognise that a more intelligent
approach could be preferred.
This is where lemmatisation comes into
play.

When looking up a word in a dictionary,
it is the lemma of that word which is
printed. Reducing a word to its lemma
cannot be accomplished by applying
a set of rules, as the given word’s part
of speech is necessary to derive the
correct lemma. And to this extent, we
are in need of a part-of-speech tagger.

Getting started with natural language
processing – handling text as data

8

Vectorization
Discussing the process of preparing text for computer processing, you may
encounter the verb “vectorizing”. Basically, the verb refers to the process
of transforming sentences or documents into machine-readable tables
(“vectors”). A good way of thinking about this is to see these vectors as simple
tables or as mediums that we utilise to send data into computers with a
specific, required structure.

A part-of-speech tagger is trained
on a large corpus of text and is
taught a statistical probability of a
tag for a given word based on the
context in which it appears and the
context in which it has appeared in
previously seen data. This allows us
to label words, e.g. as nouns, verbs or
adjectives, which, apart from being a
vital component in lemmatisation, can
be used in other linguistic analyses.

Using part-of-speech tagging in
lemmatisation allows us to reduce
“are” and “is” to the lemma “be” and
recognise that the noun “universe” and
the adjective “universal” should be
reduced to different lemmas.

Since lemmatisation is a bit more
advanced than stemming, it also
requires more computational power
and is thus slower. Though with NLP
packages in modern programming
languages, this is negligible. However,
using lemmatisation comes with some
requirements for your corpus, as the
proper semantic order of words is
needed to correctly use part-of-speech
tagging to reduce words to their lemma
and will thus not work if the text is
batched or has a lot of gaps in it.

This concludes the basic steps of
pre-processing your text for further
analysis. Next, we need to define a
way to represent the text so that our
machine has a chance to understand it.

220329_Fig_Natural Language Processing_TOBS

Vectorization

1 By numeric, we refer to methods that make textual data readable by computers. This demands numerical inputs, e.g. 0s and 1s.
2 �In the following, we work with data on a low level of granularity – sentences (i.e. we have a corpus containing several sentences).

It could also have been documents, pages etc.

Mathematical representation of text

Introduction
With the newly cleaned and pre-
processed textual data in hand, you
face the ultimate challenge: computers,
codes and machine learning models
do not understand text in the same
way that we humans decode text. For
instance, when we read the word “bear”,
several associations help us decode
the meaning of the word. In this case,
we are talking about a large, furry and
dangerous animal that eats fish, lives
in forests and has a fierce roar. To make
it even more complex, “bear” might
also refer to other situations, such as
a burden that is hard to bear, so we

may need to decode an entire sentence
before we know which “bear” is referred
to. This is easy for us humans, as such
linguistic associations are the result of
millions of years of evolution, whereas
our computers and code interpreters
start with zero predispositions to
understand the meaning of words.

So, the key question we need to
ask ourselves is how we in the best
possible numeric1 way can represent
textual data so that it is usable in our
analyses but to the highest degree
possible maintains the semantic
meaning.

9

A noticeable drawback of term
frequency vectorization is that
term rareness is not considered.
For instance, if we had to use the
vectorized text data to assess the
topics embedded across our corpus
(here, “corpus” refers to the full vector
(table) of the three sentences above),
perhaps we would like to weigh up
words that, although infrequent
across the full corpus, are extremely
important – rare and defining – for a
few documents. In this example, “lake”
in document #3 is rare because it does
not occur in documents #1 or #2,
and it is defining, as it makes up 16%
of the full document length.

To put it another way, the issue with
term frequency vectorization is
that the rare words that distinguish
documents from one another are
weighed equally to all other words
contained in the corpus. So, what we
need is an approach that lets us weigh
our vector in a more relevant way,
up-weighing rare and defining words
and down-weighing common, general
words. Combining term frequency and
so-called inverse document frequency
(TF-IDF) will help us achieve just that.

In the following, we will present a
few word vectorisation methods.
Initially, they rely on the so-called
bag-of-words assumption: that
term order is not relevant. In other
words, we can split up sentences by
the terms contained in them, throw
all of them into a bag and draw
them in any order – their presence,
not placement, is key. Obviously,
neglecting term order means that we
lose valuable information, i.e. if we had
one sentence describing two different
entities in a negative and a positive
way, respectively, we could not map
adjectives and entities after throwing
the words “into the bag” by vectorizing
our text. Later, we will loosen this
assumption.

Term frequency (TF)
One way of representing text is in a
standard count vector. Simply put, we
create a table containing the unique
terms from across all our textual data
sources2, and then we count how
many times each word occurs across
the sources – most often yielding a
rather sparse vector containing a lot of
“empty” columns with 0s.

This is exemplified in the below
sentences that are vectorized into
one table:

•	 The man helped the woman cross
the street

•	 The woman drove the car down
the street

•	 A duckling swam across a lake

220329_Fig_Natural Language Processing_TOBS

Document The Man Helped Woman Cross Street Drove Car Down A Duckling Swam Across Lake

#1 3 1 1 1 1 1 0 0 0 0 0 0 0 0

#2 3 0 0 1 0 1 1 1 1 0 0 0 0 0

#3 0 0 0 0 0 0 0 0 0 2 1 1 1 1

TF vectorizer

Getting started with natural language
processing – handling text as data

10

Term frequency inverse
document frequency (TF-IDF)
The TF-IDF vectorizer helps us weigh
terms differently so that common
terms that appear in many contexts
(such as “the”, if not removed in the
earlier steps of this guide) will be
given a lower weight and thus lower
importance than relatively more rare
words like “lake”, even if “lake” appears
more infrequently across the entire
corpus.

To utilise the vectorizer, we apply the
formula below. On the left side, we
calculate the term frequency; and
on the right side, we calculate the
inverse document frequency (the base
logarithm of the number of documents
divided by the amount that contains
the term in question).

And if we calculate the TF-IDF vector
for our three example sentences from
before, they now look like this:

As an example, the word “a” is very
defining (assuming that we did not
remove it when processing stop words)
and is thus weighed relatively higher in
the third document, as it occurs twice
in the document and only exists in that
document: (2/6 = 0.33) * log (3/1) =
~0.157. The impact of IDF is also shown
in the term “street”, as it occurs in two

out of three texts in total; and thus, the
right side of the equation becomes log
(3/2), yielding a lower weight, as the
term is not rare when assessing all the
texts in our corpus.

In the above example, we have
showcased why the TF-IDF vectorizer
solves the issue of weighting up rare
(assumed to be relevant) terms in
our corpus; but still, with both TF and
TF-IDF vectorization, term order is not
considered.

Leaving bag-of-words models
behind
One of the major drawbacks of utilising
bag-of-words models, as touched
upon above, is that word context/word
order is not considered. Essentially,
we can move away from bag-of-words
models in two ways – and both ways
require us to move away from treating
text as single tokens (“unigrams”), thus
increasing both precision but also
analytical complexity.

220329_Fig_Natural Language Processing_TOBS

Document The Man Helped Woman Cross Street Drove Car Down A Duckling Swam Across Lake

#1 0,07 0,06 0,06 0,02 0,06 0,02 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

#2 0,07 0,00 0,00 0,02 0,00 0,02 0,06 0,06 0,06 0,00 0,00 0,00 0,00 0,00

#3 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,16 0,08 0,08 0,08 0,08

TFIDF = Term Frequency (term) Inverse Document Frequency (term)

TFIDF = log
Amount of times a term occurs in document

Total amount of terms in document

Total amount of documents

Amount of documents containing term()

The woman drove the car
down the street

With this sentence, we can create
several types of n-grams that are
showcased below:

Unigram:	�The, woman, drove, the, car,
down, the, street

Bigram:	� The woman, woman drove,
drove the, the car, car down,
down the, the street

Trigram:	� The woman drove, woman
drove the, drove the car, the
car down, car down the, down
the street

And so on for higher n-gram word
levels.

N-grams
Essentially, n-gram methods entail
converting texts into larger vectors that
retain word order by splitting text into
distinct sequences of N consecutive
words. Consider the below sentence:

11

The point is that by having both “the
woman drove” and “drove the car”, we
could search for and analyse specific
word combinations where e.g. “woman”
comes prior to or after the term “drove”;
and thus, we can make higher-level
inferences than we would be able to if
we had thrown several terms, including
“woman” and “drove”, into the same bag
of words. This enables us to find out
if someone else drove the woman in
question or if the woman in question
drove a noun (e.g. a car, a bike etc.), as
term order is now considered.

While using n-grams yields the clear
benefit of retaining term order, there
are still two drawbacks of the method.
Firstly, it does not solve the issue of
high dimensionality in the feature
spare, making it more difficult to
process and analyse as the amount
of data increases. Secondly, using
n-grams can increase the complexity of
inferring and making decisions based
on data, as several similar n-grams
may yield a murky picture of the text at
hand. Because of these drawbacks, and
because more sophisticated methods
were developed and made accessible,
n-grams are not often utilised3.

Enter word embeddings
If we were to credit one “invention” with
a long range of NLP advances over the
past decade, word embeddings surely
would appear on the list. Among other
things, the word embedding way of
representing text as numerical input

3 �That said, there are some situations, e.g. when working with “small” or less-supported languages, where n-grams can improve the quality of analyses.
4 �If you have a small amount of input features, if you do not expect input features to be correlated in a semantically meaningful way, and you have a large

amount of data to train your model on. See e.g. Goldberg (2015). Of course, one-hot encoding of categorical data such as text labels should still be performed,
as models cannot deal with non-binary data. https://arxiv.org/pdf/1510.00726.pdf

for analysis and/or models has enabled
the transformer architectures, paving
the way for state-of-the-art language
models such as BERT, GPT-2, GPT-3 and
the Megatron 530B. This has had such
a large impact on the NLP scene that
whenever you undertake almost any
NLP project, odds are that one of the
first things you do is to download pre-
calculated embeddings (for “standard”
NLP problems) or start gathering data
for training/or devising custom word
embeddings.

The problems solved by word
embeddings
In the rundown of TF and TF-IDF
vectorization above, we had three
sample sentences; and even with these
short sentences, there was a lot of
“emptiness” (0 values), leaving us with
what is called a sparse feature vector.
When using either of these approaches,
we essentially create a one-hot
encoded vector, leaving us with a lot of
void space or sparseness. For example,
if we had had 10,000 policy documents
from a legislative body, we would have
an even sparser feature vector. Such
sparse feature vectors are not ideal as
a text input representation method; but
in some specific situations, they can
be optimal over word embeddings (i.e.
dense vectors)4.

On a broader note, word embeddings
solve most of the problems you would
experience using one-hot encoded
feature vectors. These solutions are
outlined in detail in the text box.

https://arxiv.org/pdf/1510.00726.pdf

Getting started with natural language
processing – handling text as data

12

Issues solved using word embeddings
Semantically similar words such as “bus” and “car” are treated as distinct
features in one-hot encoded vectors. Suppose we could perform feature
engineering so that we put “1” (or the corresponding TF-IDF value) into our
vector if any mode of transport is mentioned in a document. We would forego
the luxury of knowing whether it is a car or a bus being mentioned, but we
would be able to compare texts much better to assess whether modes of
transport are mentioned or not. When performing TF or TF-IDF vectorization,
however, the term “bus” is as similar to “car” as it is to “bear” or any other term
(i.e. not similar!).

Vocabulary sizes
The mode of representing a sparse feature vector is by having texts
represented in one row each and features (terms) in one column each. If t new
documents are added containing k new number of terms, the size of the
feature vector increases by kt. So, as more data is sampled to the text corpus,
the feature sizes can increase drastically5. This means that one would have
more model parameters to estimate; and thus, exponentially more data is
required to estimate those parameters well enough in the hopes of building
a generalisable model.

Computational needs
As the feature vector is most often very sparse, one will often end up with a
very large feature space (size of rows x columns). This will take a large load
of memory resources and potentially lead to storage concerns. Furthermore,
many machine learning models do not work well with high-dimensional,
sparse feature vectors.

Generalisation
The aspect of generalisation is the key argument for using dense word
representation. If we assume that words like “bus” and “car” are contextually
and semantically similar in our NLP problem, we need some way of letting our
model know. When a word embedding model is trained, the model learns how
to treat singular terms. This means that when the model learns “car” or “bus”,
these terms are passed through neural network transformation layers that
have corresponding biases and weights. So, when the model turns to learning
semantically similar words, the training paths of “car” and “bus” may help the
model learn what “Ferrari” is, assuming that they share feature embeddings
because the term Ferrari then is placed on a similar “path” through the neural
network layers instead of the model having to learn its meaning from scratch.
This helps models trained using word embeddings to generalise better, as
similar feature embeddings help “connect” similar terms.

5 �In Bengio et al. (2001), they describe this as the “curse of dimensionality” and pose an interesting example: If you have 100,000 terms
in your vocabulary and a sentence that is 10 terms long, you would need 100,00010 parameters to predict the 11th term.

13

What does word embeddings look
like?
Let us start with a simple-term,
frequency-based, one-hot encoded
feature vector like the one we saw a
few pages back; but for the sake of the
example, we will now transpose it:

220329_Fig_Natural Language Processing_TOBS

Document 1 Document 2 Document 3 Document 4 Document 5 Document 6

Bus 1 0 0 0 … …

Car 1 1 1 0 … …

Bear 0 1 0 1 … …

Panther 0 0 0 1 … …

Black 1 0 1 1 … …

There are probably a few key
dimensions we could summarise these
terms by. For example, we can utilise
that while cars can be dangerous, so
can bears. Similarly, panthers and
airplanes may both be perceived as
fast etc. This intuition is what word
embeddings use to realise the many
potentials mentioned above:

220329_Fig_Natural Language Processing_TOBS

Metallic Fast Dangerous Animal Black

Bus 0.82 0.45 0.21 0.01 0.21

Car 0.79 0.60 0.43 0.03 0.44

Bear 0.02 0.40 0.67 0.91 0.56

Panther 0.01 0.88 0.71 0.93 0.78

Airplane 0.85 0.91 0.32 0.02 0.11

Getting started with natural language
processing – handling text as data

14

This means that we can now describe
terms based on their related word
embeddings. So, a panther is .88 fast,
.93 animal and .78 black.

Now, if your perception at this point is
that “this does not make any sense”, but
you at the same time understand why
the feature score of black x panther is

.78, then you are following along totally
okay. The point we are getting to is that
these features can be thought of as a
single location in our word embedding
higher-dimensional feature space.
This means that we become able to
show, and thus pass onto our models,
that some words are similar based on
their feature similarities and not how
the words appear.

220329_Fig_Natural Language Processing_TOBS

Car

Bus

Airplane

Panther

Bear

Black

Animal

CarBus

Airplane

Panther

Bear

Metallic

Dangerous

Have a look at the graphs below and
see if you can figure out why the words
are clustered as they are in this fictive
word embedding space (e.g. the “black”
x “animal” space and the “metallic” x
“dangerous” space).

15

6 �Although, in fairness, it can be done. Usually, one would then convert the n-dimensional feature space into e.g. a two- or three-dimensional space using
dimensionality reduction methods such as t-SNE or PCA.

7 Bengio et al. (2001) is a great read if you are keen to learn more about word embeddings.

In the examples on the previous page,
we show how the terms map onto a
two-dimensional word embedding
feature space. In real-world word
embedding examples, we would likely
have n dimensions, but the advantages
become quite clear. Even though
the words “panther” and “bear” are
not similar at all, the model with our
embedded inputs knows that they are
not similar to buses, airplanes or cars if
we look at the “metallic” x “dangerous”
embedding space on the right (meaning
that we no longer even need the animal
embedding). Now, imagine doing this
in a 30-, 100- or even 300-dimensional
space, mapping all the terms in your
corpus onto these feature dimensions.
It would be a foolish endeavour
trying to visualise it6, but the terms’
placement in the feature space conveys
meaning and semantic context and
allows for better model generalisation.

This allows us to assign a placement in
the word embedding feature space to
each term in our documents. For now,
the example shows how it is possible to
describe the term “bus” as .82 metallic,
.45 fast, .21 dangerous, .01 animal and
.21 black. This has a huge impact, as
word embeddings are much smaller
than one-hot encoded vectors, they
convey greater similarity and are more
generalisable, and we can calculate
them with much lower computational
cost than traditional vectorization
methods.

Word embedding algorithms and how to train them
The first word embeddings were created back in 20017; and as 20 years is a
lifetime in the NLP field, word embeddings have developed a lot. Nowadays, it
is very easy to download pre-trained word embeddings from the internet (such
as GloVe, FastText, GigaWord, CoNLL etc.), but it is also possible to train your
own on a data set of your choice to fit embeddings to your specific problem.
This latter part of assembling a clean and ready-to-use data set is probably the
most difficult part of making your own word embeddings.

As far as algorithms go, there are plenty open-source word embedding
algorithms out there that are easy to use (see e.g. word2vec, GloVe, ELMo,
BERT). Also, the great part is that most of the algorithms work as essentially
unsupervised feature extractors. This means that the algorithms calculate
features based on terms that are used in the same contexts on their
own – following our example on the previous page, perhaps airplanes and
panthers are both described as fast. Of course, this depends on the type of
word embeddings you are creating.

The above example relies on adjectives,
but it is also possible to create word
embeddings, e.g. using part-of-speech
tags (the embeddings would consist
of nouns, pronouns, verbs, adjectives
etc.), named entity recognition
(the embeddings would consist of
organisations, people, places etc.) as
well as other formats.

Getting started with natural language
processing – handling text as data

16

17

Speech as data

Introduction
In speech analytics and speech as data,
audio is the key component. It might
be the words you say to your personal
virtual assistant in your phone, it might
be the complaints your customers are
calling your phone hotline with, or it
might be recordings of doctors’ notes or
journalists’ interviews.

Speech analytics covers the process
of extracting meaning from audio data
to find relevant business intelligence
insights, most often utilising NLP
tools for processing, extraction and
subsequent analysis.

In this short section, we will discuss the
types of speech data you might find,
where and how it may be gathered and
why it can be a unique driver of NLP-
fuelled business impact.

Types of speech data
When we approach speech as data and
the collection of it, we can do a coarse
segmentation of text onto a spectrum
ranging from unnatural to natural
speech – at the one end, unnatural and
command-like scripted text versus
natural and non-scripted text in free
conversation at the other end.

220329_Fig_Natural Language Processing_TOBS

Scripted text in which
speakers pre-record

commands (using “wake
words”) for controlling

personal voice assistants,
cars, television sets etc.

Commanded

The controlled scenario is
used when collecting natural
speech that is based on pre-

defi ned prompts, i.e. collecting
the many ways in which users
might ask a GPS for directions

Controlled

A recording of a conversation
between speakers, e.g. phone

or in-person conversations.
As opposed to the two

other forms of speech data,
deducing context is the main

challenge

Natural

The first two types of speech data
outlined above are mostly related to the
training of voice assistants and are set
up to maintain control of user inputs.
On the other hand, the third type of
speech data, natural speech, is where
we see the most value existing within
speech analytics, as this is the type of
speech data used in interactions with
customers, patients etc.

Collecting speech as data
Being successful in the domain of
speech analytics relies on having
access to strong speech recognition
technology (speech-to-text algorithms
and parsers). These are essentially
algorithms that can translate analogue
sound input into word vectors by 1)
converting sound waves into a digital
format (phonemes) and 2) arranging
phonemes into coherent sentences
using neural networks or Markov
models.

Just like with word embedding
technology, you could go and train
your own speech-to-text algorithm,
but plenty of pre-trained services
and software already exist, providing
a much faster way of assessing the
technology and its potential. As an
example, you can access speech-
to-text algorithms in most cloud
environments such as Microsoft
Azure, Amazon Web Services and

Google suite. You can also reach out
to third-party vendors that have spent
time and money on developing their
own algorithms and often also include
business intelligence tools or can help
pinpoint relevant use cases. However,
if you decide to train your own model,
it is not as daunting as it sounds. You
will likely use a pre-defined framework
such as Facebook’s Wav2Vec 2.0 that
can create speech-to-text vectors
based on audio. What makes the task
daunting is that you will need to sample
and record a lot of high-quality speech
that can be used. Several thousand
hours of speech, both labelled and
unlabelled.

Community help
Acquiring high-quality speech data
takes a long time, and even if you
dedicated yourself to recording
and validating a lot of your own
speech, you would quickly face
generalisation issues because
phonemes can differ vastly
across regions, genders, ages,
dialects etc. Because of this, some
communities have begun helping
each other secure representative
and high-quality speech. Anyone
can help with this, and if you want
to contribute to either speaking or
validating a few words, please see
https://commonvoice.mozilla.org/da
for Danish or https://commonvoice.
mozilla.org/en for English.

https://commonvoice.mozilla.org/da
https://commonvoice.mozilla.org/en
https://commonvoice.mozilla.org/en

Top five tips for working
with speech analytics
1.	 Identify goals and consider

alignment with strategic
initiatives.

2.	 Determine technological
wants and needs and pair with
potential vendor selection.

3.	 Build and track KPIs related to
identified goals and strategic
initiatives.

4.	 Assess and build competencies
across the organisation.

5.	 Design processes and ensure
that solid governance is in place
around the solution.

Getting started with natural language
processing – handling text as data

18

Processing speech as data
Let us venture past the process of
determining which speech to use, how
to collect it etc. and assume that we
now have raw speech data stored as
text in a database.

Speech recognition systems are not
(yet) 100% precise; and therefore,
there is going to be a certain level of
error, often calculated as word error
rate (WER). This could mean that some
words are missed or written incorrectly,
which makes it difficult to keep as
high a level of detail as possible when
using text as data. For one, you may
need to spend additional time on pre-
processing the text and sorting out
problems manually, since the voice
recognition algorithm may consistently
mistake the word “again” for “akin”;
and so, you will need to spend time on
listening and fixing. Secondly, there are
certain pre-processing and analysis
methods that rely on part-of-speech
tags that will likely become misleading
if certain words are missing, as
previously covered.

So, using pre-trained word embeddings
is not great if you are working with
incomplete speech data.

Consider, for example, the difference
between the two sentences below:

1.	 It’s the bear
2.	 Not to bear

Let us assume that the voice
recognition technology gets the second
term wrong in both sentences, i.e.
“the” and “to”. If this is the case, our
word embedding creation has no idea
whether this refers to a bear of the kind
that is dangerous and animal-like or if
it refers to the verb “to bear”.

Speech analytics can also enable real-
time fault detection. For example, if 10
customers all call within a short time
frame experiencing issues with your
webpage, you can get IT started before
an in-house person notices the issue.

Taking a broader perspective, we see
a lot of organisations that have not yet
started the journey towards speech
analytics. The important thing to note
here is that you can start the journey
in steps; and even if we advocate for
identifying goals early in the process,
it is important to note that for each
day you do not stream and store
conversations with patients, customers
and employees, you miss out on a lot of
relevant data.

Also, there may very well be future
forms of analysis that have not yet
been developed; but when they do,
having that data at hand becomes very
valuable.

Finally, as previously noted, there are
situations in which we may choose
to retain punctuation in our text to
perform certain analyses. When
working with speech as data, we do
not have the luxury of using writers’
gestures, signalling questions with
a question mark or particular (dis)
satisfaction with an exclamation mark.
Another example is delimiting when
sentences end. We do not have full
stops, and so we recommend simply
delimiting by speakers (e.g. when
speaker B interrupts speaker A, a new
sentence begins).

This means that we may miss out on
meaning conveyed by punctuation,
and thus – and this is normal when
working with speech as data – we need
to be more creative. This omission of
punctuation means that we no longer
have strong guidelines for identifying
questions, valence and sentence
structures.

Why speech analytics?
Despite the challenges, speech
analytics and speech as data hold a lot
of promise. In the realm of customer
experience, it is said that only 1 in 26
dissatisfied customers complain – the
rest churn. From that angle of customer
experience, figuring out what causes
dissatisfied customers when they
spend time on calling is time and
money well spent because it helps
enable action before customers churn.
You can become more knowledgeable
about the customer journey – which
touchpoints work/do not work – and
generally bring a lot of input on
key dimensions for which you have
previously relied on manual input or
customer surveys.

19

Conclusion

With this guide, we hope to have shown
you how rapidly the NLP development
is moving but also the value it can bring
you to get on board quickly.

This guide has given an overall
introduction to handling text as
data – but there are more steps to
follow. Once you have parsed the
speech or text, performed initial pre-
processing and made a mathematical
representation of your text, you now
need to perform a structured analysis.
To do this, you will need to be able to
identify which NLP methods and tools
provide the most value for the business
problem that you are trying to solve.

In our next guide, we will dive deeper
into some of the readily available NLP
methods that, when combined, can
help you solve a wide range of problems
and create value in your business or
organisation.

If you have any thoughts, questions,
wishes or corrections, or maybe you are
just curious about getting started on
the NLP journey, please do not hesitate
to reach out – we would love to hear
from you and help where we can.

implementconsultinggroup.com

Contact

For more information please contact:

Tobias Søndergaard
Implement Consulting Group
+45 2618 7793
tobs@implement.dk

Marie Normann Gadeberg
Implement Consulting Group
+45 2074 3484
maga@implement.dk

https://implementconsultinggroup.com/
mailto:tobs%40implement.dk?subject=
mailto:maga%40implement.dk?subject=

